Critical Point Theorems for Nonlinear Dynamical Systems and Their Applications

نویسنده

  • Wei-Shih Du
چکیده

We present some new critical point theorems for nonlinear dynamical systems which are generalizations of Dancš-Hegedüs-Medvegyev’s principle in uniform spaces and metric spaces by applying an abstract maximal element principle established by Lin and Du. We establish some generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for multivalued maps, Takahashi’s nonconvex minimization theorem, and common fuzzy fixed point theorem for τ-functions. Some applications to the existence theorems of nonconvex versions of variational inclusion and disclusion problems in metric spaces are also given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional dynamical systems: A fresh view on the local qualitative theorems

The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...

متن کامل

The Existence of Cone Critical Point and Common Fixed Point with Applications

We first establish some new critical point theorems for nonlinear dynamical systems in cone metric spaces or usual metric spaces, and then we present some applications to generalizations of DancšHegedüs-Medvegyev’s principle and the existence theorem related with Ekeland’s variational principle, Caristi’s common fixed point theorem for multivalued maps, Takahashi’s nonconvex minimization theore...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications

In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010